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2 P. D. CHA AND L. G. DE PILLISmatrices. Numerical experiments are presented to validate the proposed model-updating techniques,to illustrate the e�ects of the number of measured modes on the quality of the updated model, toshow how the magnitudes and locations of the added masses in
uence the updated matrices, and tohighlight the numerical issues discussed in this paper.Copyright c
 2000 John Wiley & Sons, Ltd.key words: Model updating, Added masses, Least squares1. IntroductionHighly accurate and detailed analytical models are required to analyze and predict thedynamical behavior of complex structures during analysis and design. With the proliferationof digital computers, new methods of analysis have been developed, in particular through themethod of �nite elements. Once a �nite element model of a physical system is constructed, itsaccuracy is often tested by comparing its analytical modes of vibration (or natural frequenciesand mode shapes) with those obtained from the physical system during a modal survey. Ifthe agreement between the two is good, then more credence is given to the analytical model,and it can be used with con�dence for future analysis. If the correlation between the two ispoor, then assuming that the experimental measurements are correct, the analytical modelmust be adjusted so that the agreement between predictions and test results is improved.The updated model may then be considered to be a better dynamical representation of thestructure than the initial analytical model. The updated model can subsequently be usedwith reasonable accuracy to assess the stability and control characteristics and to predict thedynamical responses of the structure. The above process of correcting the system matrices isCopyright c
 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 0:1{45Prepared using nmeauth.cls



MODEL UPDATING WITH KNOWN MASSES 3known as model updating.In recent years various methods have been developed to improve the quality of the analytical�nite element models using test data. A detailed discussion of every approach is beyondthe scope of this paper, and interested readers are referred to the recent survey paperby Mottershead and Friswell [1]. In the following paragraphs, some commonly used modelupdating techniques will be brie
y reviewed.Berman [2] proposed an updating scheme based on the Lagrange multipliers formalism thatuses measured mode shapes to correct the mass matrix of a structure. This updating algorithmidenti�es a set of minimum changes in the analytical mass matrix so that the measured modesare orthogonal to the updated mass matrix of the system. Using essentially the method �rstintroduced by Baruch and Bar Itzhack [3], Wei [4] developed an optimal method to updatethe sti�ness matrix of a structure. He also employed the Lagrange multipliers approach toadjust the sti�ness matrix, subjected to the constraints of satisfying the generalized eigenvalueproblem, the orthogonality condition of the measured mode shapes, and the symmetry propertyof the sti�ness matrix.The Lagrange multipliers approaches to update the system matrices return fully populated(or dense) mass and sti�ness matrices that may not bear any resemblance to the physicalsystem being analyzed. To preserve the physical load paths of the original analytical model,Kabe [5] assumed the analytical mass matrix to be correct and incorporated the readilyavailable structural connectivity information in addition to the test data to optimally adjustthe sti�ness matrix. The adjustments he performed ensure that zero and nonzero elements ofthe analytical model are preserved, and the adjusted model exactly reproduces the modes usedin the identi�cation. He also used a Lagrange multipliers technique, so that the percentageCopyright c
 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 0:1{45Prepared using nmeauth.cls



4 P. D. CHA AND L. G. DE PILLISof change to each sti�ness element is minimized. While Kabe's approach to updating thesti�ness matrix is straightforward, the assumption that the actual mass matrix is identical tothe analytical mass matrix remains debatable [6].Using an approach based on matrix perturbation theory, Chen, Kuo, and Garba [7] foundthe correction mass and sti�ness matrices by enforcing the orthogonality conditions of themeasured mode shapes with respect to the system matrices. Like the schemes proposed byBerman and Wei, however, the updating algorithms also return fully populated mass andsti�ness matrices, thus failing to preserve the physical connectivity of the system. In addition,because the approach outlined in [7] is based on perturbation theory, the updating algorithmcan be applied only when the deviations of the actual parameters from the analytical valuesare small. Finally, the derivation carried out by Chen, Kuo, and Garba requires that themeasured modal matrix, [X], be properly normalized with respect with the actual mass andsti�ness matrices, [M ] and [K], of the system, such that it satis�es [X]T [M ][X] = [I] and[X]T [K][X] = [�]. Because the objective of model updating is to correct the system matrices,[M ] and [K] are not known a priori. Thus, the orthogonality constraints cannot be enforced,and their updating algorithm cannot be applied in practice.In this paper, new model-updating schemes are introduced that adjust the system massand sti�ness matrices from an incomplete set of measured modes. The underlying principle ofthe proposed scheme is to add known masses to the physical structure, measure the modes ofvibration of the new system, and then use the new set of measurements in conjunction withthe original set of experimental data to correct the mass and sti�ness matrices of the actualstructure.Copyright c
 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 0:1{45Prepared using nmeauth.cls



MODEL UPDATING WITH KNOWN MASSES 52. Proposed Model-Updating AlgorithmConsider the analytical model of a given structure, with N degrees of freedom, whose modesof vibration are given by the solutions of the following generalized eigenvalue problem:[Ko][Xo] = [Mo][Xo][�o]; (1)where [Mo] and [Ko] are the symmetric analytical mass and sti�ness matrices of the system,[Xo] is the N�N modalmatrix (whose columns correspond to the eigenvectors or mode shapes)of the analytical model, and [�o] is an N �N diagonal matrix whose elements correspond tothe eigenvalues (or the square of the natural frequencies) of the analytical model. A modeof vibration constitutes a given natural frequency and its corresponding mode shape (or thesquare root of an eigenvalue and its corresponding eigenvector).Experimentally, it is often di�cult if not impossible to measure the same number of modes asthe number of degrees of freedom of the analytical model. Thus, the measured data are said tobe incomplete. A problem unrelated to that previously described, but also commonly referredto as \incomplete," occurs when the measured eigenvector contains fewer coordinates than areavailable from the analytical model. In common with other model-updating techniques, themeasured eigenvectors must �rst be expanded before the proposed algorithms can be applied.Various mode expansion techniques can be found in references [8] and [9]. In this paper, we willassume that all the coordinates of the eigenvectors can be measured. This assumption allowsus to focus our attention on the quality of the proposed updating algorithm, and not confoundthe resulting updates with errors introduced by mode shape expansion. Therefore, we willreserve the word \incomplete" to mean that the test measurements contain fewer modes thanthose of the analytical model.Copyright c
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6 P. D. CHA AND L. G. DE PILLISRegardless of whether the measured modes are complete or incomplete, the modes ofvibration of the actual system must satisfy the following generalized eigenvalue problem:[K][X] = [M ][X][�] (2)where [M ] and [K] are the actual N �N symmetric mass and sti�ness matrices of the physicalsystem, [X] is the measured N�Ne modalmatrix (Ne denotes the number of measured modes;Ne � N ), and [�] is an Ne � Ne diagonal matrix whose elements correspond to the measuredeigenvalues of the system. Knowing [Mo], [Ko], [X], and [�], we seek, through model updating,to correct [Mo] and [Ko] so that the new analytical system matrices yield modes of vibrationthat are closer to the measured data than they were initially.2.1. Mass UpdatingTo update the mass matrix of the analytical model, we add a known mass matrix, [Ma], to thephysical structure, at locations coincident with the nodes of the �nite element model in orderto preserve the size of the initial analytical model. The resulting system satis�es[K][Xa] = ([M ] + [Ma]) [Xa][�a] (3)where [Xa] corresponds to the N � Ne measured modal matrix of the new system, and [�a]is an Ne � Ne diagonal matrix, whose elements are the measured eigenvalues of this mass-modi�ed system. It is assumed that the added masses do not alter the sti�nesses of the systemsigni�cantly. Taking the transpose of Eq. (2) and postmultiplying the resulting matrix equationby [Xa], we get [X]T [K][Xa] = [�][X]T [M ][Xa] (4)Copyright c
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MODEL UPDATING WITH KNOWN MASSES 7Premultiplying Eq. (3) by [X]T , we have[X]T [K][Xa] = [X]T ([M ] + [Ma]) [Xa][�a] (5)Subtracting Eq. (5) from (4), we obtain[�][X]T [M ][Xa]� [X]T [M ][Xa][�a] = [Q] (6)where [Q] = [X]T [Ma][Xa][�a] (7)Let [P ] = [X]T [M ][Xa] (8)Then Eq. (6) simpli�es to [�][P ]� [P ][�a] = [Q] (9)Because both [�] and [�a] are diagonal matrices, Eq. (9) can be easily expanded so that its(i; j)th element yields (�i � �aj)Pij = Qij (10)where �aj is the jth measured eigenvalue of the mass-modi�ed system and i; j = 1; : : : ; Ne.Assuming the Ne measured eigenvalues of the original and the mass-modi�ed systems do notcoincide, we can solve for all of the unknowns Pij and then construct matrix [P ]. If any twomeasured eigenvalues of the original and the mass-modi�ed systems coincide, we simply changethe added masses or their locations to make the eigenvalues distinct. See Section 4.4 for furtherdiscussion on the selection of the number, placement, and magnitude of the added masses.Copyright c
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8 P. D. CHA AND L. G. DE PILLISThe actual and the analytical mass matrices of the system are related as follows:[M ] = [Mo] + [�M ] (11)where [�M ] represents the correction to the analytical mass matrix. Rewriting Eq. (8), weobtain [X]T [�M ][Xa] = [P ]� [X]T [Mo][Xa] (12)Because [X] and [Xa] are both rectangular matrices (assumingNe < N ), they have no inverses.However, Eq. (12) can be rewritten so that [�M ] appears as an unknown column vector �mas follows: [A ] �m = r (13)where �m = [�m11 � � � �m1N j �m21 � � � �m2N j � � � j �mN1 � � ��mNN ]T (14)and r = [r11 � � � r1Ne j r21 � � �r2Ne j � � � j rNe1 � � �rNeNe ]T (15)In Eq. (14), �mij corresponds to the (i; j)th element of [�M ]. Matrix [A] is of size N2e � N2,whose elements can be determined by expanding the left-hand side of Eq. (12); vector r is oflength N2e , whose components can be obtained by expanding the right-hand side of Eq. (12).The technique to solve Eq. (13) will be discussed in Section 2.3. We now turn our attention toupdating the sti�ness matrix of the system.2.2. Sti�ness UpdatingFrom Eqs. (4) and (5), we get[�]�1[X]T [K][Xa] = [X]T [M ][Xa] (16)Copyright c
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MODEL UPDATING WITH KNOWN MASSES 9and [X]T [K][Xa][�a]�1 = [X]T ([M ] + [Ma]) [Xa] (17)Subtracting Eq. (16) from Eq. (17), we have[X]T [K][Xa][�a]�1 � [�]�1[X]T [K][Xa] = [S] (18)where [S] = [X]T [Ma][Xa] (19)We de�ne [U ] = [X]T [K][Xa] (20)Then Eq. (18) simpli�es to [U ][�a]�1 � [�]�1[U ] = [S] (21)Because both [�] and [�a] are diagonal, Eq. (21) can be easily expanded so that its (i; j)thelement yields � 1�aj � 1�i�Uij = Sij (22)where i; j = 1; : : : ; Ne. Assuming that the Ne measured eigenvalues of the original and themass-modi�ed structures are distinct, the unknowns Uij can be computed and matrix [U ] canbe assembled.As in the case of the mass matrix, the actual and the analytical sti�ness matrices are relatedby [K] = [Ko] + [�K] (23)Copyright c
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10 P. D. CHA AND L. G. DE PILLISwhere [�K] represents the matrix of sti�ness o�sets. In order to �nd [�K], we �rst rewriteEq. (20) as [X]T [�K][Xa] = [U ]� [X]T [Ko][Xa] (24)As before, Eq. (24) can be manipulated into the following form:[B ] �k = h (25)where �k = [�k11 � � ��k1N j �k21 � � ��k2N j � � � j �kN1 � � ��kNN ]T (26)and h = [h11 � � �h1Ne j h21 � � �h2Ne j � � � j hNe1 � � �hNeNe ]T (27)In Eq. (26), �kij represents the (i; j)th element of [�K]. Matrix [B] is of size N2e � N2 andvector h is of length N2e . The components of [B] and h can be obtained by expanding the left-and right-hand sides of Eq. (24), respectively.2.3. Solution TechniqueEquations (13) and (25) are of the general form[G ]y = z (28)where matrix [G ] and vector z are both known and of size N2e�N2 and length N2e , respectively.Because the modal matrices [X] and [Xa] are always of full rank, matrix [G] will also be of fullrank (see the Appendix for a detailed proof). When Ne = N , Eq. (28) can be solved exactlyby using simple Gaussian elimination. When Ne < N , Eq. (28) yields an underdeterminedproblem (that is, the number of equations is less than the number of unknowns), which,Copyright c
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MODEL UPDATING WITH KNOWN MASSES 11because the system has full rank, will have an in�nite number of solutions. To render thesolution unique, we may choose a solution vector y such that the Euclidean norm of vector yis minimized. The resulting solution is referred to as the minimumnorm least squares solutionto Eq. (28). Because the analytical and the actual system matrices are presumed to be close,it is reasonable to use the unique minimum norm solutions to update the analytical mass andsti�ness matrices, respectively.Initially it may appear that one must solve two underdetermined least-squares problems ofsize N2e � N2 (assuming Ne < N ) in order to update the system matrices [see Eqs. (13) and(25)]. However, the optimal matrix storage scheme commonly used in �nite elements [10] canbe applied to pass along the available sparsity information of the analytical system and toimpose the condition that all zero elements in the analytical system matrices remain zerosin the adjusted system matrices. Mathematically, this can be achieved by eliminating all ofthe known zero elements from y and by deleting all the corresponding columns in [G ]. Thisdramatically reduces the size of the problem to be solved.To see how the connectivity information can be used to reduce the size of the least squaresproblem, consider a system whose analytical mass matrix is diagonal. Then �mij = 0 for i 6= j,and Eq. (13) reduces to [A0 ] �m0 = r (29)where [A0 ] is obtained from [A ] by deleting all the columns that multiply by �mij for i 6= j,and �m0 = [�m11 �m22 � � � �mNN ]T (30)Thus, the initial problem of size N2e �N2 is reduced to one of size N2e �N . The resulting leastsquares problem will be either overdetermined (that is, the number of equations is greater thanCopyright c
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12 P. D. CHA AND L. G. DE PILLISor equal to the number of unknowns) or underdetermined, depending on whether N2e � N orN2e < N , respectively.Similarly, the connectivity information of the analytical sti�ness matrix can also be enforcedto reduce the size of the least squares problem to be solved. For instance, if the analyticalsti�ness matrix is tridiagonal, then �kij = 0 for ji� jj > 1, and Eq. (25) reduces to[B0 ] �k0 = h (31)where [B0 ] is obtained from [B ] by deleting all the columns that multiply by �kij for ji�jj > 1,and �k0 = [�k11 �k12 j �k21 �k22 �k23 j � � � j �kNN�1 �kNN ]T (32)Thus, the initial problem of size N2e �N2 is reduced to one of size N2e � (3N � 2).The proposed updating algorithms rely on the correctness of the connectivity information.Because the basis of model updating is the analytical model, the analytical model mustcapture certain physical attributes of the actual system. Here, we assume that the connectivityinformation in the analytical model is correct, and the proposed updating algorithms maintainthat physical sparsity pattern in the mass and sti�ness matrices. It will be shown that theproposed updating schemes are very forgiving when the mass and sti�ness parameters varysubstantially between the analytical and the actual systems.3. Numerical IssuesThe numerical issues encountered when solving a least squares problem di�er in naturedepending on whether the problem is overdetermined or underdetermined. Because matrix[G] of Eq. (28) is of full rank, a least squares solution to Eq. (28) always exists. However, sinceCopyright c
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MODEL UPDATING WITH KNOWN MASSES 13the reduced systems of Eqs. (29) and (31) were obtained by deleting certain columns of [G]to enforce the sparsity information, matrix [G] may su�er rank de�ciency. While there existtechniques for determining the numerical rank of such systems and subsequently �nding theunique minimum norm solution, numerical perturbations in the data, in the form of eithermeasurement or round-o� errors, can still give rise to computationally induced inaccuracies.It is therefore necessary to understand how y is a�ected by perturbations in [G] and z.To this end, let us examine the least squares solution of a general m � n linear system[A]x = b (33)Let x̂ represent the least squares solution of the m � n perturbed system[ ~A]x̂ = ~b (34)where [ ~A] = [A] + [�A] (35)and ~b = b+ �b (36)The perturbations [�A] and �b can re
ect either numerical inaccuracies in the 
oating-pointrepresentations of [A] and b or measurement errors during testing.A problem is said to be numerically ill conditioned when small errors in data lead to arelatively large error in the solution, regardless of how stable the algorithm is for solving theproblem. The condition number of a linear system reveals the accuracy or inaccuracy of thecomputed result due to small perturbations. For the linear system of Eq. (33), its conditionnumber is given by cond ([A]) = jj[A]jj � jj[A]yjj (37)Copyright c
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14 P. D. CHA AND L. G. DE PILLISwhere jj[A]jj denotes the Euclidean norm of [A] and jj[A]yjj is the pseudoinverse of [A], de�nedas [A]y = 8>><>>: �[A]T [A]��1 [A]T ; for m � n[A]T �[A][A]T��1 ; for m < n3.1. Overdetermined SystemsIf a general m�n linear system of Eq. (33) is overdetermined (m � n) and full rank, the leastsquares solution to the system is unique. Premultiplying Eq. (33) by [A]T yields[A]T [A]x = [A]Tb (38)Because [A] is full rank and m � n, ([A]T [A])�1 exists. Thus, the unique least squares solutionof Eq. (33) is given by x = �[A]T [A]��1 [A]Tb (39)where x is the best solution in the sense of minimizing jj[A]x� bjj.The e�ects of perturbing [A] and b separately on the solution of Eq. (33) have been wellstudied and are detailed in [11]. The results become more complicated when [A] and b areperturbed simultaneously. Golub and van Loan [12] provide the following theorem that can beused to analyze the condition of the system when both [A] and b undergo perturbations. If wede�ne � = max� jj[�A]jjjj[A]jj ; jj�bjjjjbjj � (40)and let � be such that (for jjbjj 6= 0)sin (�) = jj[A]x� bjjjjbjj 6= 1 (41)Copyright c
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MODEL UPDATING WITH KNOWN MASSES 15then the upper bound on the relative solution error is given byjjx̂� xjjjjxjj � ��2 cond([A])cos (�) + tan (�) � (cond([A]))2�+O(�2) (42)where tan (�) = jj[A]x� bjjpjjbjj2� jj[A]x� bjj2 (43)Thus, if the residual norm jj[A]x�bjj is nonzero, it is the square of the cond([A]) that measuresthe sensitivity of the least squares solution to numerical perturbations.The Normal Equations method and QR factorization algorithms are commonly used tosolve an overdetermined least squares problem (for example, see [11]). Of the QR methods,Householder transformations, Givens rotations, or modi�ed Gram-Schmidt orthogonalizationscan be implemented. QR factorizations tend to be more numerically reliable but are moreexpensive, in terms of total 
oating-point operations, by at least a factor of two. According toGolub and van Loan [12], the Normal Equations solution method produces an x̂ whose relativeerror always depends on the square of cond([A]), whereas the QR approaches produce solutionsthat depend on both cond([A]) and the product jj[A]x� bjj � (cond[A])2. Thus, if the norm ofthe residual jj[A]x�bjj is small, QR has a distinct advantage over Normal Equations. However,if jj[A]x�bjj is large and the problem is ill conditioned, both methods will produce inaccurateresults. Finally, because the extra computational expense necessary for implementing the QRsolution method is a relatively small price to pay for increased numerical stability, a QRapproach is used in this paper to solve overdetermined systems.3.2. Underdetermined SystemsThe fundamental di�erence between the solution of an overdetermined and an underdeterminedleast squares problem of the form of Eq. (33) of full rank is that while there is a unique leastCopyright c
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16 P. D. CHA AND L. G. DE PILLISsquares solution to the overdetermined system (m � n), there are an in�nite number ofsolutions to the underdetermined system (m < n).This can be understood when we consider that if [A]x = b is an underdetermined system ofequations, then every least squares solution x can be represented asx = xp + xN (44)where xp is any solution satisfying [A]xp = b, and xN is in the null space of [A]. That is,[A]xN = 0 (45)The complete solution set is given byx = [A]yb+ �[I]� [A]y[A]�y (46)where y is an arbitrary n-vector. Recall that since m < n, [A]y is de�ned by [A]y =[A]T ([A][A]T )�1. Comparing Eqs. (39) and (46), we note the absence of the arbitrary vector,y, in Eq. (39).When there are an in�nite number of solutions, it is commonly the minimum norm solutionthat is sought and then used to correct the system matrices. Additionally, perturbation analysishas been done mainly for the minimum norm case. Golub and van Loan [12] show that for anunderdetermined system of full rank, an upper bound on the relative error in the minimumnorm solution is given byjjx̂� xjjjjxjj � cond([A]) � jj[�A]jjjj[A]jj min(2; n�m + 1) + jj�bjjjjbjj �+ O(�2) (47)Equation (47) shows that the sensitivity of an underdetermined system now depends oncond([A]), as opposed to the overdetermined case in which the sensitivity depends on(cond[A])2 (see Eq. (42)). Because cond([A]) � 1 for any matrix [A], the error bound forCopyright c
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MODEL UPDATING WITH KNOWN MASSES 17the overdetermined case can become fairly large unless the norm of the residual is su�cientlysmall. However, in the underdetermined case, the error bound does not depend explicitly onthe norm of the residual, but only on the perturbations in [A] and b.Algorithms for �nding the least squares solution of an underdetermined system include theNormal Equations method and the QR factorization algorithms. A solution approach mayeither �nd some nonunique least squares solution to [A]x = b or �nd the unique solution xsuch that the Euclidean norm of x, jjxjj, is minimized. The latter, which is the minimumnormsolution, is given explicitly by x = [A]yb (48)Of course, it is entirely possible that another solution besides the one with minimum normmay yield a more accurate updated model. However, as discussed previously, because [�M ]and [�K] are assumed to be relatively small, it is reasonable to use the unique minimumnormsolution in this case to correct the initial analytical matrices.3.3. Relating Accuracy to Ne and NFor systems in which there is no special sparsity pattern to be maintained, the least squaressystem will always have dimension N2e � N2 [see Eqs. (13) and (25)]. If the measured modesare incomplete (for Ne < N ), the problem will always be underdetermined.As stated previously, an overdetermined system of full rank has a unique least squaressolution, whereas an underdetermined system of full rank admits a unique solution only whenthe additional minimum norm constraint is imposed. Often the physical structure will possessa special sparsity pattern in the analytical system that we will have to maintain.Our numericalexperiments indicate that in certain cases, when the sparsity pattern of a physical structure isCopyright c
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18 P. D. CHA AND L. G. DE PILLISimposed, more accurate solutions are achieved when the least squares system is overdeterminedas opposed to underdetermined, even if the systems are rank de�cient. This may be surprisingin light of the fact that our error bounds (42) and (47) seem to indicate that there is moreroom for error in the overdetermined case. However, these are upper bounds and not exacterror measurements. Additionally, if the norm of the residual vector is small compared withthe perturbations in [A] and b, the error bound for the overdetermined system could in factbe smaller than that of the underdetermined system. Also, these experimental results makesome intuitive sense: the more information we can gather about the physical system, the betterour updated model becomes. Thus, to improve the accuracy of the updated model, solving anoverdetermined system for this particular application is preferred.The above discussion has direct implications about the minimumnumber of experimentallydetermined modes, Ne, that should be measured before implementing the proposed model-updating algorithm. For example, if �Mij = 0 for i 6= j (that is, [M ] is a diagonal matrix),then the least squares system has dimension N2e �N . In this case, to induce an overdeterminedsystem requires a minimum of Ne � pN (49)measured modes. Similarly, in the case of the sti�ness matrix, if the condition that [K] is atridiagonal matrix is imposed, at least Ne � p3N � 2 (50)experimental modes are needed to achieve an overdetermined least squares system. The aboveresults will be validated the following sections.Copyright c
 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 0:1{45Prepared using nmeauth.cls



MODEL UPDATING WITH KNOWN MASSES 194. Numerical ExperimentsTo update the analytical mass and sti�ness matrices using the proposed routines requires thesolution of least squares problems, which can be either overdetermined or underdetermined,depending on the number of measured modes, Ne, used to perform the update. For solving aleast squares problem, we used the CMLIB [13] routine sglss, which is specialized to handleboth underdetermined and overdetermined systems of the form [A]x = b, where [A] is anm � n matrix and b is a vector of length m. When the system is overdetermined (m � n),the least squares solution is computed by decomposing the matrix [A] into the product ofan orthogonal matrix [Q] and an upper triangular matrix [R] (QR factorization). When thesystem is underdetermined (m < n), the minimum norm solution is computed by factoringthe matrix [A] into the product of a lower triangular matrix [L] and an orthogonal matrix [Q](LQ factorization). If matrix [A] is determined to be rank de�cient, that is, if the rank of [A]is less than min(m,n), then again the minimum norm least squares solution is computed.4.1. Model Updating Based on a Complete Set of Measured ModesConsider the system of Fig. 1 with N = 25. We �rst examine the e�ectiveness of our modelupdating techniques for the case where the number of measured modes, Ne, is equal to thetotal degrees of freedom of the system, N (that is, the set of measured modes is complete).The analytical masses and sti�nesses are given by mo = 2:00 kg and ko = 5:00 N/m. Theactual masses and sti�nesses are listed in Tables I and II, respectively.For the system of Fig. 1, because the mass matrix [M ] is diagonal, updating the mass matrixrequires �nding the solution of an N2e �N least squares problem. Because the sti�ness matrixis tridiagonal, updating the sti�ness matrix requires �nding the solution of an N2e � (3N � 2)Copyright c
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1 2 NFigure 1. Simple chain of coupled oscillators.least squares problem. In general, these systems may be overdetermined or underdetermined,depending on whether N2e is greater than or less than N in the case of mass updating, andon whether N2e is greater than or less than (3N � 2) in the case of sti�ness updating. For thisset of experiments, because Ne = N , both the mass update system and the sti�ness updatesystem will be overdetermined.In Table I we compare the actual and the updated masses for the system of Fig. 1. For thepurpose of numerical simulations, the ith actual mass, mi, and the analytical mass, mo, arerelated as follows: mi = mo(1 + �mi) (51)where �mi represents the percentage of deviation of the ith actual mass from its nominalanalytical value. The �mi's are randomly chosen (with uniform distribution), and they havea mean and standard deviation of �0:06 and 0.28, respectively. To perform the mass updatingalgorithm, we add lumped masses of magnitude 0:2 kg to masses (or nodes) 5, 10, 15, 20,and 25. The added masses are all an order of magnitude smaller than the nominal analyticalCopyright c
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MODEL UPDATING WITH KNOWN MASSES 21Table I. The actual and the updated masses (in kg), for Ne = N = 25. The analytical masses aremo = 2:000 kg.mactual mupdate mactual mupdatem1 =1.2942 1.2942 m14 =2.6722 2.6722m2 =2.1831 2.1831 m15 =1.3355 1.3355m3 =1.3117 1.3117 m16 =2.6680 2.6680m4 =2.6581 2.6581 m17 =1.3899 1.3899m5 =2.4371 2.4371 m18 =1.8632 1.8632m6 =1.7651 1.7651 m19 =1.6231 1.6231m7 =2.8502 2.8502 m20 =1.1578 1.1578m8 =1.7984 1.7984 m21 =1.1439 1.1439m9 =1.7793 1.7792 m22 =1.8189 1.8189m10 =2.7588 2.7588 m23 =1.2320 1.2320m11 =2.1221 2.1221 m24 =1.6389 1.6389m12 =1.1613 1.1613 m25 =2.2254 2.2254m13 =2.0234 2.0234 |{ |{masses. Note how well the updated masses correspond to the actual values, despite the largedeviations of the actual masses from the analytical values.Table II shows the actual and the updated sti�nesses for the system of Fig. 1. As in the caseof the masses, the numerical choice for the actual sti�nesses, ki, and the analytic sti�nesses,Copyright c
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22 P. D. CHA AND L. G. DE PILLISTable II. The actual and the updated sti�nesses (in N/m), for Ne = N = 25. The analytical massesare ko = 5:000 N/m.kactual kupdate kactual kupdatek1 =4.1400 4.1398 k14 =5.9877 5.9877k2 =6.8802 6.8804 k15 =5.4973 5.4973k3 =5.6052 5.6056 k16 =5.9483 5.9483k4 =6.5108 6.5109 k17 =5.0320 5.0320k5 =2.9343 2.9343 k18 =6.3608 6.3608k6 =7.1326 7.1326 k19 =6.2726 6.2726k7 =3.3072 3.3072 k20 =7.0572 7.0572k8 =3.2986 3.2986 k21 =6.6026 6.6026k9 =6.2021 6.2020 k22 =4.9326 4.9326k10 =6.6399 6.6398 k23 =6.3932 6.3932k11 =5.9489 5.9488 k24 =5.8004 5.8003k12 =6.3203 6.3202 k25 =6.5935 6.5935k13 =3.3357 3.3356 |{ |{ko, are chosen to have the following relationship:ki = ko(1 +�ki) (52)where �ki represents the percentage of deviation of the ith actual sti�ness from its nominalanalytical value. The �ki's are randomly chosen (with uniform distribution), and they havea mean and standard deviation of 0.13 and 0.25, respectively. In this case, too, the updatedCopyright c
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MODEL UPDATING WITH KNOWN MASSES 23Table III. The analytical, actual, and updated eigenvalues (in 1/sec2), for the analytical, actual, andupdated system parameters of Tables I and II�analytical �actual �update �analytical �actual �update�1 =0.0095 0.0105 0.0105 �14 =5.4613 6.6635 6.6635�2 =0.0851 0.0954 0.0954 �15 =6.0697 7.7364 7.7365�3 =0.2353 0.2580 0.2580 �16 =6.6618 8.8005 8.8005�4 =0.4577 0.4674 0.4674 �17 =7.2287 9.8139 9.8139�5 =0.7489 0.8441 0.8441 �18 =7.7618 9.9112 9.9112�6 =1.1046 1.1282 1.1282 �19 =8.2531 10.7379 10.7378�7 =1.5193 1.7577 1.7577 �20 =8.6950 11.3051 11.3051�8 =1.9868 2.1220 2.1220 �21 =9.0810 12.2057 12.2056�9 =2.5000 2.7864 2.7864 �22 =9.4051 12.9773 12.9774�10 =3.0511 3.2055 3.2056 �23 =9.6624 13.2552 13.2555�11 =3.6317 3.5768 3.5768 �24 =9.8490 14.8620 14.8619�12 =4.2330 4.9515 4.9515 �25 =9.9621 18.8955 18.8955�13 =4.8460 5.4920 5.4920 |{ |{ |{sti�ness values track the actual sti�nesses very closely, even though the deviations betweenthe actual and the analytical sti�nesses are large.In Table III, we compare the analytical eigenvalues for the system of Fig. 1 with those of theactual and the updated systems. The analytical eigenvalues of the system are found by solvingEq. (1), the actual eigenvalues are obtained from a modal survey, and the updated eigenvaluesCopyright c
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24 P. D. CHA AND L. G. DE PILLISare calculated by solving [Kupdate]xupdate = �update[Mupdate]xupdate (53)where [Mupdate] and [Kupdate] are the updated mass and sti�ness matrices (see Tables I andII for the updated system parameters), and (�update;xupdate) are the updated eigenvalues andeigenvectors. From Table III, note the excellent agreement between the updated and the actual(or the measured) eigenvalues of the system, despite the large di�erences between the actualand the initial analytical eigenvalues. For i = 1; � � � ; N , (�actual � �update)i is consistently twoto four orders of magnitude smaller than the corresponding (�actual��analytical)i, which clearlyindicates the dramatic improvement in the eigenvalues of the updated model over the initialanalytical system.When the set of measured modes of vibration is complete, that is, when Ne = N , theupdating algorithms can be used to accurately correct the analytical mass and sti�nessmatrices. Because the proposed updating algorithms allow the well-known and readily availableconnectivity information to be enforced, our mass and sti�ness updating schemes generatematrices that not only produce excellent numerical agreement between the physical and theupdated system, but also preserve the physical con�guration of the structure exactly.Finally, while �ve lumped masses were used to generate the results of Tables I and II, fewerlumped masses can also be used to execute the updating algorithms. For example, when onlytwo lumped masses of magnitude 0.2 kg are added at nodes 1 and 25, the resulting updatedmasses are found to be nearly as accurate as those of Table I. However, the proposed sti�nessupdating algorithm returns sti�nesses that are not nearly as accurate as those of Table II.Nevertheless, the resulting updated sti�nesses are still much closer to the actual values thanthe initial analytical ones. Clearly the number, placement, and magnitude of the added lumpedCopyright c
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MODEL UPDATING WITH KNOWN MASSES 25masses a�ect the quality of the updates. Their in
uences on the proposed updating algorithmswill be detailed in Section 4.4.4.2. Model Updating Based on an Incomplete Set of Measured ModesThe results of Section 4.1 were obtained for the ideal case when the set of measured modesis complete. Note, however, that because of physical limitations or time and cost constraints,the set of measured modes is often incomplete. Thus in practice, Ne is almost always less thanN . Of considerable interest, then, is the e�ect of the number of measured modes, Ne, on thequality of the updated system matrices.Theoretically, Ne can include any modes of vibration of the system. However, becausethe lower modes are typically easier to measure experimentally than the higher modes, theparameter Ne will be used in the subsequent analysis to represent the lowest Ne measuredmodes of the structure. Thus, when Ne = 5, the �rst �ve measured modes will be used toperform the update.To quantify the accuracy of the mass updating algorithm, we measure the relative error inthe updated masses with the following relation:�m = jmupdate �mactualjjmactualj (54)where mupdate and mactual are vectors of length N whose elements are the updated and theactual lumped masses, respectively, and jaj represents the Euclidean norm of the vector a.To illustrate the improvement of the updated masses over their initial analytical values, weintroduce the following relative error parameter for the analytical masses:(�m)o = jmanalytical �mactualjjmactualj (55)Copyright c
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26 P. D. CHA AND L. G. DE PILLISSimilar expressions can be de�ned for the sti�ness and the eigenvalue error parameters, denotedby �k and ��, respectively.An error parameter can also be de�ned for the modal matrix of the system. It is commonpractice to check for the correctness of the modal matrix by resorting to the orthogonalitycharacteristics of the normal modes. If the actual modal matrix, [X], is properly normalized,then it is orthogonal with respect to the actual mass matrix, [M ], such that[X]T [M ][X] = [I] (56)where [I] is the identity. Because the updated modal matrix is approximate, replacing theactual modal matrix, [X], by the updated modal matrix, [Xupdate], in Eq. (56) yields[Xupdate]T [M ][Xupdate] = [Iupdate] (57)where [Xupdate] is normalized so that the diagonal elements of [Iupdate] are identically one. Ingeneral, [Iupdate] is a full matrix, but if the update is good, all the o� diagonal terms will besmall. The following can be used to describe the accuracy of the modal matrix quantitatively:�X = jj[I]� [Iupdate]jj (58)As before, to gauge the improvement of the updated modal matrix over the initial analyticalmodal matrix, we introduce the following error parameter for the analytical modal matrix:(�X )o = jj[I]� [Xanalytic]T [M ][Xanalytic]jj (59)where [Xanalytic] represents the normalized analytical modal matrix of the system.For an updated model to be judged better than the initial analytical model, we must have�m < (�m)o, �k < (�k)o, �� < (��)o, and �X < (�X )o. For an updated model to be consideredaccurate, �m, �k, ��, and �X must be su�ciently small. Finally, the smaller the error parameters,the better the updated model.Copyright c
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MODEL UPDATING WITH KNOWN MASSES 27Figure 2 shows the variations of �m and �k for the system parameters of Tables I and II asa function of Ne. Also shown are the corresponding (�m)o and (�k)o, which are independentof Ne and are given by the horizontal lines. Note the improvement in the updated parametersas Ne increases. The experimental results are consistent with physical intuition: the larger theknowledge space or the more information we can gather about the physical system, the betterour updated model becomes.The curves of Fig. 2 reveal the fewest Ne needed in order to achieve a certain level ofaccuracy. Therefore, these curves can be used to determine the smallest Ne that should beobtained for performing the update. Interestingly, each curve reaches a saturation point beyondwhich additional information does not lead to signi�cant improvement in the corrected model.The results clearly indicate that there is a minimumNe that needs to be obtained in order toensure su�cient accuracy in the adjusted model.Figure 3 shows the resulting error parameters for the updated eigenvalues and modalmatrix, �� and �X , as a function of Ne. Note how well the modes of vibration of the updatedsystem track the actual system, especially as Ne becomes large. Thus, the proposed updatingalgorithms return system matrices that yield modes of vibration that are much closer to themeasured data than those of the initial analytical model.4.3. Minimum Ne Needed to Ensure Su�cient AccuracyAn overdetermined system of full rank has a unique least squares solution. An underdeterminedsystem of full rank will admit a unique least squares solution only when an additional constraintis imposed, such as the minimum norm constraint. In our application, when the sparsityinformation of the mass or sti�ness matrix is enforced, the system may become rank de�cient.Copyright c
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     Figure 2. The mass and sti�ness error parameters, �m and �k, as a function of Ne, for the systemparameters of Tables I and II. Lumped elements are added to masses 5, 10, 15, 20, and 25. Thehorizontal lines represent the mass and sti�ness error parameters of the analytical model, (�m)o and(�k)o.Copyright c
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     Figure 3. The eigenvalue and modal matrix error parameters, �� and �X, as a function of Ne, for thesystem parameters of Tables I and II. Lumped elements are added to masses 5, 10, 15, 20 and 25. Thehorizontal lines represent the mass and sti�ness error parameters of the analytical model, (��)o and(�X)o.Copyright c
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30 P. D. CHA AND L. G. DE PILLISFrom numerical experiments, we observed that more accurate solutions are obtained when theleast squares system is overdetermined as opposed to underdetermined, even if the systemsare rank de�cient. The numerical results from Section 4.2 have direct implications about theminimumnumber of experimentally determined modes one should measure in order to ensuresu�cient accuracy of the updated solution.For instance, to update a diagonal mass matrix so that the resulting least squares problembecomes overdetermined, we would need at least Ne � pN measured modes. Similarly,to update a tridiagonal sti�ness matrix so that the resulting least squares problem isoverdetermined, we would need at least Ne � p3N � 2 measured modes.The above criteria regarding the fewest number of measured modes needed to perform theupdate are supported by various numerical experiments. For N = 25, our heuristic indicatesthat at least �ve measured modes are required to su�ciently update the mass matrix and atleast nine measured modes are needed to correct the sti�ness matrix. Naturally, because thenumber of measured modes used to perform the update directly a�ects the errors, �m and�k, the minimum number of measured modes that we should use to perform the update alsodepends on the size of error that we are willing to tolerate. In the case of the experimentsof Section 4.2, the minimum number of measured modes suggested by the heuristics for themass update (Ne = 5) leads to �m � 0:11 (see Fig. 2), and for the sti�ness update (Ne = 9)results in �k � 0:07 (see Fig. 2), both of which are substantially lower than their correspondinganalytical error parameters.We emphasize that the criteria regarding the fewest Ne needed to perform the updateare formulated empirically. Thus, depending on the system parameters and, as mentionedpreviously, required error tolerances, sometimes more and other times fewer measured modesCopyright c
 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 0:1{45Prepared using nmeauth.cls



MODEL UPDATING WITH KNOWN MASSES 31are required to ensure accuracy of the updated model. For example, for the mass parametersof Fig. 2, seven measured modes are su�cient to correct the mass matrix to achieve an errorof less than 0:025 (�m < 0:025). For the sti�ness values of Fig. 2, thirteen measured modes aresu�cient to update the sti�ness matrix to achieve an error of less than 0:025 (�k < 0:025).4.4. E�ects of Locations, Magnitudes, and the Number of Added ElementsFrom numerical experiments, we observed that the location, magnitude, and number of addedlumped masses may a�ect the numerical stability of the updating algorithms. In the followingdiscussion, we will formulate an expression that can be used as a measure for determiningwhether the resulting mass-modi�ed system allows for a numerically stable updated solution.Additionally, we will develop an expression that will provide some guidance in choosing therequired magnitude, placement, and number of added lumped masses in order to execute theupdating algorithms.A frequently encountered scenario in structural dynamics is determining the changes in theeigensolution of a system after certain modi�cations are introduced. If the changes made aresmall, then the initialmodal characteristics can be used as a basis fromwhich to extract the neweigensolution of the modi�ed system without performing a new and possibly costly analysis.Using perturbation theory for the eigenvalues and assuming the unperturbed eigenvalues tobe distinct, one can show (see references [14] and [15]) that the jth �rst-order perturbedeigenvalue of a slightly modi�ed structural system is given by�j = �oj + yToj ([�K]� �oj [�M])yoj (60)where �j represents the jth eigenvalue of the perturbed system, �oj is the jth unperturbedeigenvalue, yoj is the jth unperturbed eigenvector, and [�M] and [�K] are the �rst-orderCopyright c
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32 P. D. CHA AND L. G. DE PILLISperturbation mass and sti�ness matrices, respectively.Consider now the case of correcting or updating the mass matrix of the system using themass updating algorithm developed in Section 2.1 to solve solve Eq. (13). This method requiresa modal survey of the mass-modi�ed system to be performed. If one assumes that the addedmasses are small compared to the analytical masses of the system, then the unperturbed andthe perturbed systems correspond to the actual and the mass-modi�ed systems, respectively.Using the nomenclature introduced earlier, we have for this case [�M] = [Ma] (matrix of addedmasses), [�K] = [0], �oj = �j (the jth measured eigenvalue of the actual system) and yoj = xj(the jth measured eigenvector of the actual system). Then Eq. (60) can be rewritten as�aj = �j � �jxTj [Ma]xj (61)where �aj denotes the jth eigenvalue of the perturbed or the mass-modi�ed system. Equation(10) shows that the mass updating algorithm is stable as long as�i � �aj 6= 0; for i; j = 1; � � � ; Ne (62)That is, we require all the measured eigenvalues for the mass-modi�ed system to be distinctfrom those of the initial structure. Using Eq. (62), each time we add a di�erent set of massesto the structure, we have to remeasure eigenvalues of the new system in order to check ourstability criterion. We therefore look for an equivalent equation that directly relates the actualelements of the added mass system to the stability of the numerical solution. SubstitutingEq. (61) into Eq. (62), we have�i � �j + �jxTj [Ma]xj 6= 0; for i; j = 1; � � � ; Ne (63)Rearranging Eq. (63), we havexTj [Ma]xj 6= 1� �i�j ; for i; j = 1; � � � ; Ne (64)Copyright c
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MODEL UPDATING WITH KNOWN MASSES 33Expanding the left hand side of Eq. (64) yieldsNXr=1 NXs=1(Ma)rs(xj)r(xj)s 6= 1� �i�j ; for i; j = 1; � � � ; Ne (65)where (Ma)rs represents the (r; s)th element of the added mass matrix [Ma], and (xj)r denotesthe rth element of eigenvector xj (the jth measured eigenvector of the actual system). Whenthe left- and right-hand sides of Eq. (65) are nearly identical, the mass-updating algorithmbecomes unstable. To ensure numerical stability, the location, magnitude, and number of addedmasses must be chosen so that the inequality of Eq. (65) is maintained. Thus, Eq. (65) allowsone to select the size, location, and number of added masses that should be employed.If we assume [Ma] to be diagonal, Eq. (65) simpli�es toNXr=1(Ma)rr(xj)2r 6= 1� �i�j ; for i; j = 1; � � � ; Ne (66)Equation (66) can be used to make an a priori determination of the number, placement, andsize of the added masses. To do so, we recast Eq. (66) as a least squares problem of the form[A]x = b, where [A] and b are knowns and of dimension N2e �N and length N2e , respectively,and vector x is the unknown, consisting of [(Ma)rr ]r=1;��� ;N . Computation of the solution ofthe resulting least squares problem may be very expensive, however, especially for large Nand Ne. For our purposes, because Eq. (62) is much easier to check once all the eigenvaluemeasurements have been taken, we use it as an a posteriori measure of the goodness of thenumber, placement, and size of the added masses. Our experiments are intended to highlightthe fact that mass placement, number, and size do indeed a�ect the accuracy of our solution.In all cases considered, we have ensured that Eq. (62) is satis�ed.In applying the mass-updating scheme, the mechanism that leads to instability will bemore complicated and more di�cult to show analytically because the perturbed eigenvaluesCopyright c
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34 P. D. CHA AND L. G. DE PILLISof the mass-modi�ed system include higher-order terms. Nevertheless, the above perturbationanalysis readily reveals that the magnitude, location, and number of added masses do in facta�ect the stability of the updating algorithm.To see how the added lumped masses a�ect the quality of the update, consider the actualsystem whose masses and sti�nesses are given by those of Tables I and II. Instead of adding�ve lumped masses to execute the updating algorithms as we did to obtain the results of Fig. 2,consider adding only two masses of magnitude 0.2 kg each at nodes 3 and 21. Figure 4 shows thevariations of the resulting relative mass error parameter, �m, and the resulting relative sti�nesserror parameter, �k, as a function of Ne. Note that �m decreases initially with increasing Neuntil Ne = 4, but increases to above (�m)o suddenly for Ne = 5 and Ne = 6. For Ne � 7,�m becomes nearly zero. Similarly, note that �k decreases with increasing Ne until Ne = 9,increases slightly for Ne equal to 10 and 11, and then drops quickly down to nearly zero forlarger values of Ne. Because the relative solution error for the least squares problem dependson the condition number of the linear system (recall the discussions on overdetermined andunderdetermined systems in Sections 3.1 and 3.2), we speculate that the regions in which�m and �k are above (�m)o and (�k)o correspond to those in which the condition number ofthe least squares matrix, cond([A]), becomes large. The sensitivity of an underdeterminedsystem depends on cond([A]), and the sensitivity of an overdetermined system is generallydominated by (cond([A]))2, so we introduce an instability measure that equals the logarithmof cond([A]) if the system is underdetermined and equals the logarithm of cond([A]2) if thesystem is overdetermined. Figure 5 shows the variation of the instability number as a functionof Ne. When N = 25, the mass-updating algorithm is underdetermined for Ne < 5 andoverdetermined for Ne � 5; similarly, the sti�ness-updating algorithm is underdetermined forCopyright c
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     Figure 4. The mass and sti�ness error parameters, �m and �k, as a function of Ne, for the systemparameters of Tables I and II. Lumped elements are added to masses 3 and 21. The horizontal linesrepresent the mass and sti�ness error parameters of the analytical model, (�m)o and (�k)o.Copyright c
 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 0:1{45Prepared using nmeauth.cls



36 P. D. CHA AND L. G. DE PILLISNe < 9, and overdetermined for Ne � 9. We point out that a large condition number impliesthat the upper bound on the numerical error may be large, but does not necessarily imply thatthe error itself is large. On the other hand, a very small condition number does imply that thenumerical error itself will also be small. The variation in the instability number as a functionof Ne shown in Fig. 5 does in fact track fairly well the accuracy of the computed solutionsshown in Fig. 4, in the sense of the upper bound. For this set of system parameters, a matrixwith the logarithm of the condition number close to 1010 or higher has the potential to giverise to numerical errors.Figure 6 shows the variations of the eigenvalue and modal matrix error parameters, �� and�X , as a function of Ne, for the case of adding two lumped masses at nodes 3 and 21. We notethat both the eigenvalue and modal matrix error parameters increase approximately wherethe mass matrix itself su�ers from error. In this set of experiments, sti�ness errors were notsu�ciently pronounced to be evidenced in these plots.For the set of system parameters of Tables I and II, we have seen that as few as two addedlumped masses can be used to execute the update, provided the masses are strategically placed.However, even when the updating schemes are numerically stable for two added masses, theupdated mass and sti�ness parameters are not as accurate as those obtained when �ve addedmasses are used to perform the update. Thus, there appears to be a trade-o� between numericalaccuracy and experimental e�ort. When more lumped masses are attached, more work andlonger down-time will result; however, the resulting updated model will be more accurate.Conversely, when fewer lumped masses are added, less work will be required but at the expenseof less accuracy. To validate the above conjecture, we added lumped masses (of magnitude 0.2kg) to every node. Figures 7 and 8 show the resulting variations of �m, �k, ��, and �X as aCopyright c
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MODEL UPDATING WITH KNOWN MASSES 41required to update the mass matrix than the sti�ness matrix. This can be explained by notingthat to render the least squares problem overdetermined for the mass matrix, at least pNmeasured modes are required, while to render the problem overdetermined for the sti�nessmatrix, at least p3N � 2 measured modes are needed.5. ConclusionNew mass and sti�ness updating algorithms are developed. Using the original test data andthe newly acquired mass-modi�ed modes of vibration, the mass and sti�ness matrices ofthe analytical model can be accurately corrected. By manipulating the matrix equationsin such a way that the unknown correction mass and sti�ness matrices appear as columnvectors, the connectivity information can be easily implemented, thus preserving the physicalcon�guration of the system and reducing the amount of computational e�ort required tocorrect the analytical model. In addition, the structure of the least squares problems revealsthe minimum number of modes one would need to measure in order to ensure a su�cientlyaccurate updated model.When the set of measured modes is complete, the updating routines return updated massand sti�ness matrices that are nearly identical to those of the actual system. While the levelof accuracy diminishes as the number of measured modes is decreased, the resulting updatedmodel that is obtained is still more accurate than the initial analytical model, even for a limitednumber of measured modes. To ensure the numerical stability of the updating schemes, anymasses can be added to the actual system as long as the measured eigenvalues of the actualsystem and the mass-modi�ed systems are distinct. This implies that the magnitude of theadded masses can be small, and the number of added masses can be few. The proposed massCopyright c
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42 P. D. CHA AND L. G. DE PILLISand sti�ness updating algorithms do require additional work and cause down-time, becausethe modes of vibration for the mass-modi�ed system need to be measured. The additionale�ort, however, is a relatively small price to pay for the ability to correct the analytical modelaccurately. ACKNOWLEDGEMENTSWe thank the reviewers who gave a thorough and careful reading to the original manuscript. We alsoacknowledge the reviewer who suggested an alternative approach to updating the sti�ness matrix,which we have incorporated into the revised paper. Their comments are greatly appreciated and havehelped to improve the quality of the paper. L.G. de Pillis thanks Argonne National Laboratory andHarvey Mudd College for supporting this research. Argonne support is under U.S. Department ofEnergy Contract W-31-109-ENG-38. APPENDIXBecause the modal matrices [X] and [Xa] are always of full rank, we claim that matrix [G] will alsobe of full rank. Consider the following triple product that has the same form as the left-hand sides ofEqs. (12) and (24): [X]T [�Y ][W ] (67)The known matrices [X] and [W ] are of dimension N � Ne, and the unknown matrix [�Y ] is ofdimension N �N . Let the (i; j)th element of [X], [W ] and [�Y ] be represented by xij, wij, and �yij,respectively. Let the jth column vector of [X] and [W ] be denoted by xj and wj (j = 1; � � � ;Ne),respectively. Expanding and manipulating Eq. (67) so that the elements of the unknown matrix appearas an unknown vector, we get [G] �y (68)Copyright c
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MODEL UPDATING WITH KNOWN MASSES 43where �y, of length N2, is given by�y = [�y11 � � � �y1N j �y21 � � � �y2N j � � � j �yN1 � � � �yNN ]T (69)Element-by-element calculations reveal that matrix [G] is of the form[G] = 26666666666664 [G1]...[Gi]...[GNe ] 37777777777775 (70)where each block [Gi], of dimension Ne �N2, is given by[Gi] = 26666666664 x1iwT1 x2iwT1 x3iwT1 � � � xNiwT1x1iwT2 x2iwT2 x3iwT2 � � � xNiwT2... ... ... ...x1iwTNe x2iwTNe x3iwTNe � � � xNiwTNe 37777777775 (71)We claim that [G] has full rank, and we formalize this in the following theorem.Theorem A: Given N � Ne real matrices [X] and [W ] of full rank, if matrix [G], of dimensionN2e �N2, is constructed from [X] and [W ] as in Eqs. (70) and (71), then [G] also has full rank.Proof: Because [W ] has full rank, the set of vectors wj (j = 1; 2; � � � ;Ne) is linearly independent, andtherefore block [Gk] (which contains rows (k � 1)Ne + 1 through kNe) is also linearly independent,for k = 1; : : : ;Ne. We must next examine the possibility of linear dependence among rows in di�erentblocks and, in particular, among rows numbered k, k + Ne, k + 2Ne, : : : , k + (Ne � 1)Ne, fork = 1; : : : ;Ne.Without loss of generality, assume that there is linear dependence to be found for k = 1, whichwould imply that there exist scalars �j (for j = 1; : : : ;Ne � 1) so that we can write row 1 of block 1Copyright c
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44 P. D. CHA AND L. G. DE PILLISas a linear combination of the �rst rows from subsequent blocks as follows:[x11wT1 x21wT1 x31wT1 : : : xN1wT1 ] = �1[x12wT1 x22wT1 x32wT1 : : : xN2wT1 ]+ �2[x13wT1 x23wT1 x33wT1 : : : xN3wT1 ]+ � � � (72)+ �Ne�1[x1NewT1 x2NewT1 x3NewT1 : : : xNNewT1 ]This is equivalent to writingx11wT1 = (�1x12 + �2x13 + � � �+ �Ne�1x1Ne)wT1x21wT1 = (�1x22 + �2x23 + � � �+ �Ne�1x2Ne)wT1 (73)...xN1wT1 = (�1xN2 + �2xN3 + � � �+ �Ne�1xNNe)wT1This implies that x1 = �1x2 + �2x3 + � � �+ �Ne�1xNe (74)Equation (74) says that the �rst column of [X] can be expressed as a linear combination of thelast Ne � 1 columns of [X]. This is clearly a contradiction, because [X] is given to have full rank.Therefore, our initial supposition that linear dependence can be found among the rows of [G] is shownto be impossible, and it follows that [G] must have full rank.REFERENCES1. J. E. Mottershead and M. I. Friswell, Model updating in structural dynamics: A survey, Journal ofSound and Vibration 1993; 167(2):347{375.2. A. Berman,Mass matrix correction using an incomplete set of measuredmodes,AIAA Journal 1979;17(10):1147{1148.3. M. Baruch and I. Y. Bar Itzhack, Optimal weighted orthogonalization of measured modes, AIAAJournal 1978; 16(4):346{351.Copyright c
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